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Resumen  
Este artículo intenta ofrecer una interpretación económica a los factores latentes que 
determinan los movimientos del retorno de bonos de diferente plazo en un modelo de la 
estructura de tasas de interés en tiempo continuo y con ausencia de oportunidades de arbitraje 
para Chile. En el modelo, dos factores latentes explican la dinámica de las tasas de interés, la 
tasa de interés instantánea y su tendencia central estocástica. Los resultados sugieren que el 
tramo corto de la estructura de tasas de interés se explica primordialmente por cambios en el 
primer factor, mientras que el segundo factor explica el tramo más largo de la estructura de 
tasas. Por lo tanto, si uno considera los factores que explican los movimientos de la estructura 
de tasas de interés, debería pensar en al menos dos tipos de innovaciones presentes en la 
economía: innovaciones temporarias que provocan cambios en las tasas de interés de corto y 
mediano plazo, mucho mayores que los experimentados por tasas de interés de largo plazo, e 
innovaciones persistentes que tienen efectos sobre el nivel de la estructura de tasas. 
 
 
Abstract  
This paper attempts to provide an economic interpretation of the factors that drive the 
movements of interest rates of bonds of different maturities in a continuous-time no-arbitrage 
term structure model for Chile. The dynamics of yields in the model are explained by two 
latent factors, namely the instantaneous short rate and its time-varying central tendency. The 
model estimates suggest that the short end of the yield curve is mainly driven by changes in 
first latent factor, while long-term interest rates are mainly explained by the second latent 
factor. Consequently, when examining movements in the term structure, one should think of 
at least two forces that hit the economy: temporary shocks that change short-term and 
medium-term interest rates by much larger amounts than long-term interest rates, causing 
changes in the slope of the yield curve; and long-lived innovations which have persistent 
effects on the level of the yield curve. 
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1 Introduction

Affine no-arbitrage dynamic term structure models are “the model[s] of choice
in finance” (Diebold, Piazzesi, and Rudebusch 2005). These models employ
a structure that consists of a small set of factors that characterize the yield
curve, providing a parsimonious representation of the yield curve. At the
same time they impose restrictions to ensure that yield dynamics are consis-
tent in the cross-section and in the time series dimension (Dai and Singleton
2000, Piazzesi 2003). Even though these models provide a useful statisti-
cal description of the yield curve, they offer little insight of what the latent
factors are, their relationship to macroeconomic variables, or the forces that
drive its movements.

In this paper I attempt to provide an economic interpretation of the fac-
tors that drive the movements of interest rates of bonds of different maturities
in a continuous-time no-arbitrage term structure model. Following Jegadeesh
and Pennacchi (1996) and Balduzzi, Das, and Foresi (1998), the model I use
in my analysis assumes the existence of a stochastic discount factor, which is
governed by two latent factors with a proper economic interpretation. The
first latent factor is the instantaneous short-term interest rate, and the second
factor is the time-varying stochastic mean of the instantaneous short rate,
capturing the notion that short rates display short-lived fluctuations around
a time-varying rest level. This model generalizes the continuous-time term
structure model presented in Vasicek (1977), but it is nevertheless solvable in
closed form. Under this framework, bond yields are linear or affine functions
of the latent factors, with restrictions on the cross-sectional and time-series
properties of the yield curve that rule out arbitrage strategies.

While most of the related literature has focused on the analysis of the U.S.
economy, little attention has been paid to emerging markets. I estimate the
proposed model using monthly information on index-linked securities issued
by the central bank and traded in the Chilean bond market from January
1990 through March 2006. Compared to developed economies, the Chilean
fixed-income bond market is not underdeveloped, and Central Bank bonds
are by far the most traded as well as the most liquid fixed-income securities
(see Braun and Briones 2006). Nevertheless, the analysis of an emerging
economy comes along with several estimation challenges. Most studies use
zero-coupon yields that are estimated from prices of coupon bonds using one
of the interpolation methods proposed by Fama and Bliss (1987) and McCul-
loch and Kwon (1993). Typical implementation of these methods requires
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a rich set of bond prices with different maturities, which are unavailable
in many emerging markets where there is a substantial number of ‘missing
bond yields’. To overcome this problem, I rely on an extended version of the
Kalman filter and maximum-likelihood to estimate the unobservable state
variables and the model parameters using cross-sectional/time-series data of
zero-coupon and coupon bond prices. Using this approach, I am able to es-
timate the zero-coupon term structure even for days where bonds with only
few maturities are traded, while at the same time the Kalman filter allows
the state variables to be handled correctly as unobservable variables.1

The model estimates suggest that the instantaneous rate is more volatile
and exhibits short-lived deviations from its time-varying mean, while the
time-varying central tendency exhibits a weak reversion to its long-run value
and a volatility less than half that of the short rate. According to the fac-
tor loadings implied by the estimated parameters, the very short end of the
yield curve is driven by the first latent factor, but as the term to maturity in-
creases the central tendency starts driving the movements in the yield curve,
playing an important role at explaining the evolution of long-term interest
rates. Consequently, a shock to the first latent factor increases short-term
and medium-term interest rates by much larger amounts than the long-term
interest rates, so that the yield curve becomes less steep (i.e., experiences a
decrease in its slope). Thus, it is reasonable to interpret this short-lived shock
as a temporary positive shock to the economy which increases temporarily
production possibilities. On the other hand, a shock to the time-varying
mean translates into an increase in short-term and long-term yields, chang-
ing the level of the yield curve. Therefore, a second source of shocks that
moves the yield curve can be related to long-lived innovations which will
induce a persistent change in the level of the yield curve, like a persistent
(almost permanent) positive shock to productivity.

My work is more closely related to recent economics and finance pa-
pers exploring the macroeconomic determinants of the unobservable factors,
and to macro-finance modeling which explicitly incorporates macroeconomic
variables into multi-factor yield curve models. For instance, Wu (2001) and
Piazzesi (2005) relate monetary policy shocks to temporary changes in the
factor that influences the slope of the yield curve (slope factor), since mone-

1Babbs and Nowan (1999) provide a generalization of the Kalman filter to estimate
generalized Vasicek term structure models, and Cortázar, Naranjo, and Schwartz (2003)
present an application of this methodology for a market with low-frequency transactions,
namely Chile.
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tary policy surprises affect short rates more than long ones. Ang and Piazzesi
(2003) examine the influences of macroeconomic variables and latent factors
that jointly determine the term structure of interest rates. They find that
inflation and real activity have a significant impact on medium-term bond
yields (up to a maturity of one year), but most of the movements in long-
term yields are still accounted for by the unobservable factors. While most of
these papers agree on the effects of macroeconomic variables on the slope of
the yield curve, there are still conflicting results when explaining the move-
ments of the level of the yield curve. Diebold, Rudebusch, and Aruoba (2006)
obtain more favorable results using a Nelson-Siegel model combined with a
VAR-model for the macroeconomy. They find that inflation is closely related
to the factor that influences the slope of the yield curve, while the factor that
changes the level of the yield curve (level factor) is highly correlated with
real activity. Using different modeling strategies, Rudebusch and Wu (2004)
and Dewatcher and Lucio (2006) interpret the slope factor as the cyclical
response of the central bank to changes in the economy. While Rudebusch
and Wu (2004) argue that the level factor reflects market participants’ view
about the inflation target of the central bank, Dewatcher and Lucio (2006)
link this factor to long-run inflation effects.

The early literature investigating the term structure of interest rates in
Chile has relied on the parametric model proposed by Nelson and Siegel
(1987) (Herrera and Magendzo 1997, Zuñiga and Soria 1998 and Lefort and
Walker 2000), however, this type of model does not acknowledge that bond
yields need to be consistent giving rise to term structure estimates which
allow arbitrage opportunities. The studies of Parisi (1998), Parisi (1999)
and Zuñiga (1999b) go further and investigate the ability of one-factor no-
arbitrage models in explaining the short-term interest rate, while Zuñiga
(1999a) and Cortázar et al. (2003) provide estimates of multi-factor mod-
els. They find that no-arbitrage models outperform parametric specifications
(Cortázar et al. 2003) and more simple autoregressive models (Parisi 1999).
Fernández (2001), on the other hand, uses a semi-parametric specification
of a one-factor no-arbitrage model to study the empirical properties of the
term structure of interest rates. In contrast to the previous literature for
Chile, I don’t only present estimates of the term structure of interest rates,
but also attempt to give an economic interpretation to the model estimates.
Moreover, I characterize the way in which shocks to the factors behind the
movements of the term structure change interest rates of different maturities,
and provide a possible interpretation to this innovations.
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The rest of the paper unfolds as follows. In Section 2 I present the
continuous-time no-arbitrage term structure model. In Section 3 I present
the state space formulation of the model and the estimation of the parameters
by means of the Kalman filter. I also present an interpretation of the esti-
mated parameters and discuss the reliability of the model-based yield curves
obtained. In Section 4 I use impulse-response functions implied by the affine
term structure model to discuss the sources of shocks that move the yield
curve and their possible economic interpretation. Section 5 concludes.

2 A model of the term structure

Here I introduce the framework that I use for modeling the term structure of
interest rates. First, I present several important relationships on asset pric-
ing. Then, I present the solution to the no-arbitrage term structure model
governed by two latent factors. Are two factors enough? Even though the
work of Litterman and Scheinkman (1991) finds that almost all of movements
in various US Treasury bond yields are captured by three unobservable fac-
tors, the study of Diebold et al. (2006) finds that two factors may suffice to
capture the time-series variation in yields at a monthly frequency, since the
first two principal factors account for almost 99% of the movements of yield-
curve variation. The third factor is found unimportant since it is related to
heteroskedasticity, and yields exhibit little heteroskedasticity at monthly fre-
quency. The third factor is more important at daily and weekly frequencies
(Ang, Piazzesi, and Wei 2006).

2.1 Background issues on asset pricing

Let P (t, T ) denote the price at time t of a zero-coupon bond maturing at
time T . Assuming, without loss of generality, that the bond has a face value
equal to one and its yield to maturity with continuous compounding is equal
to R(t, T ), its price can be written as,

P (t, T ) = exp[−(T − t)R(t, T )] (1)

and the yield to maturity on this zero-coupon bond is equal to,

R(t, T ) = − logP (t, T )

T − t
(2)
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Using these results, one can define the instantaneous short rate as,

rt = lim
T→t

R(t, T ) = −lim
T→t

logP (t, T )

T − t
(3)

Similarly, the price of a coupon bond paying τ coupons until the maturity
date can be written as a portfolio of τ zero-coupon bonds,

P c(t, T ) =
τ∑
i=1

CiP (t, t+ i) (4)

=
τ∑
i=1

Ci exp[−iR(t, t+ i)]

where τ = T − t is also the time to maturity of the coupon bond (see Camp-
bell, Lo, and MacKinlay 1997).

2.2 An affine term structure model

In an arbitrage free-environment and with a positive stochastic discount fac-
tor equal to Λt, the price at date t of a zero-coupon bond paying one unit of
account at time T can be expressed as,

P (t, T ) = Et
(

ΛT

Λt

)
(5)

where Et is the expectation taken conditional on time-t information. Follow-
ing the standard asset-pricing theory, I assume that the stochastic discount
factor is governed by the following process,

dΛt = −rtΛtdt−Λtλ
′dWt (6)

where λ = [λ1, λ2]
′ is a vector containing the market prices of risk which are

assumed to be constant over time.
Following the work of Jegadeesh and Pennacchi (1996) and Balduzzi,

Das, and Foresi (1998), I assume that the short rate rt reverts toward a
time-varying mean µt, whose dynamics is described by the following set of
stochastic differential equations,

drt = κ1(µt − rt)dt+ σ1dW1t (7a)

dµt = κ2(θ − µt)dt+ σ2dW2t (7b)
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where κ1, κ2, σ1, and σ2 are constants, and Wt = [W1t,W2t]
′ is a two-

dimensional Brownian motion with a correlation coefficient equal to ρ. The
coefficients κ1 and κ2 measure the speed of mean reversion of the two vari-
ables to their respective means, µt and θ, ρ measures the covariance between
these two variables, while σ1 and σ2 are the volatilities of the short-term
interest rate and the stochastic mean, respectively. This model generalizes
the continuous-time term structure presented in Vasicek (1977) by letting
the short-rate revert toward a time-varying stochastic mean, and captures
the notion that short-term rates display short-lived fluctuations around a
time-varying rest level, or central tendency.2

Under the above assumptions and using Itô’s lemma, the price of a bond
is characterized by the following partial differential equation,3

1

2

(
∂2P

∂r2
σ2

1 +
∂2P

∂µ2
σ2

2

)
+

∂2P

∂r∂µ
σ1σ2ρ+

∂P

∂r

[
κ1

(
µ− r − λ1σ1

κ1

)]
(8)

+
∂P

∂µ

[
κ2

(
θ − µ− λ2σ2

κ2

)]
+
∂P

∂t
− rP = 0

subject to the boundary condition P (T, T ) = 1. As shown in Langetieg
(1980) and Cochrane (2005), the solution for the fundamental valuation equa-
tion (8) is an exponentially linear function of the two latent variables, rt and
µt, taking the following exponential-affine form,

P (t, T ) = exp[A(τ) +B1(τ)rt +B2(τ)µt] (9)

where τ = T − t is the time to maturity of the bond and A(τ), B1(τ) and
B2(τ) are functions of the maturity, the parameters of the model and satisfy
the no-arbitrage condition in the bond market.

Equations (8) and (9) determine the solution for the functions A(τ), B1(τ)
and B2(τ) in terms of a set of ordinary differential equations, which have a

2 The Vasicek (1977) model is of the form,

drt = κ1(µ− rt)dt+ σdWt

where the instantaneous interest rate converges to a target level µ that is constant over
time. Jegadeesh and Pennacchi (1996) and Balduzzi et al. (1998) show that a model with
a time-varying target level outperforms the Vasicek model.

3The details of the model solution are spelled out in Appendix A.
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solution equal to,

B1(τ) =
exp(−κ1τ)− 1

κ1

B2(τ) =
exp(−κ2τ)− 1

κ2

− exp(−κ1τ)− exp(−κ2τ)

κ1 − κ2

A(τ) =

∫ τ

0

(
1

2
B2

1σ
2
1 +B2

2σ
2
2 +B1B2σ1σ2ρ−B1λ1σ1 −B2λ2σ2 +B2κ2θ

)
ds

Using equation (2) and (9) we can write the yield of a bond maturing τ
periods ahead as,

R(t, T ) = −1

τ
[A(τ) +B1(τ)rt +B2(τ)µt] (10)

= a(τ) + b1(τ)rt + b2(τ)µt

where a(τ) = −A(τ)/τ , b1(τ) = −B1(τ)/τ and b2(τ) = −B2(τ)/τ . In this
model, bond yields are linear functions of the state variables, rt and µt.
Therefore, it belongs to the family of affine term structure models, in which
zero-coupon bond yields, their physical dynamics and their equivalent mar-
tingale dynamics are all affine (constant-plus-linear) functions of an under-
lying vector of state variables.4

Using equation (3), one can see that the instantaneous short rate is given
by,

lim
τ→0

R(t, t+ τ) = rt (11)

and the long-term rate is equal to the mean of the stochastic time varying
long-term factor θ adjusted by risk premia,

lim
τ→∞

R(t, t+ τ) = θ − λ2σ2

κ2

− λ1σ1

κ1

− σ2
1 + σ2

2

2κ2
1

− σ1σ2ρ

κ2κ1

Notice that the time-varying mean of the first latent factor, µt, does not
affect the short end of the yield curve, since its loading starts at zero for
the instantaneous interest rate (i.e., lim

τ→0
B2(τ) = 0). However, it does affect

yields of longer maturities, influencing the long-end of the term structure.

4See Piazzesi (2003) for a review of affine models of the term structure.
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3 Estimation

3.1 Data

In this paper I use three types of instruments to estimate the yield curve;
pure discount bonds, which make a single fixed payment at the maturity date;
coupon bonds which make coupon payments at equally spaced intervals until
the maturity date, in which the face value is also paid and, coupon bonds
paying both, the face value and the coupon rate, in each coupon payment.

I use end-of-month price quotes for index-linked instruments issued by the
Central Bank of Chile, which have both their coupon and principal payments
linked to the Unidad de Fomento (UF), from January 1990 through March
2006. The UF is a unit of account that varies according to past inflation,
and is not perfectly correlated with current inflation. For short-maturity
instruments, UF-linked yields cannot be considered real yields, but as the
maturity of the instrument increases these yields approximate real interest
rates more closely (see Chumacero 2002).

The database contains 4,472 observations on pure-discount bonds (Pagare
Reajustable del Banco Central), and semi-annual amortizing coupon bonds
(Pagare Reajustable con Cupones and Bonos del Banco Central de Chile).
Over the sample period, each month contains an average of twenty seven
observations. In early years, however, the number of index-linked bonds out-
standing is very small, resulting on a median of 8 monthly observations over
1990 and 1991. During these first two years, the maturity of coupon bonds,
as well, is confined to values that range from fifteen to twenty semesters and
zero-coupon bonds which have maturities of less than one year. As we move
forward in time, the maturity of traded coupon bonds diversifies ranging
from 1 month to 40 semesters (see Figure 1).

3.2 State space specification

To estimate the affine term structure model presented in section 2, I first
derive the discrete-time dynamics implied by the continuous-time model in
order to match the observation frequency data. Then, using the discrete-
time equivalent model I present the state space model formulation of the
term structure model.

Note that the two stochastic differential equations (7a) and (7b) that
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describe the state variables can be expressed as,

d

[
rt
µt

]
=

([
−κ1 κ1

0 −κ2

] [
rt
µt

]
+

[
0
κ2θ

])
dt+

[
σ1 0
0 σ2

]
dWt

or more compactly,
dXt = (AXt + b)dt+ CdBt (12)

where Bt is a standardized Brownian motion with a covariance matrix equal
to CC′ = σρσ′. Using the methods presented in Langetieg (1980) and
Bergstrom (1990), the equivalent discrete-time for this process is obtained
from the solution to the system of stochastic differential equations (12). This
solution implies the following equivalent discrete-time,

Xtk = Φ(ψ)Xtk−1
+ c(ψ) + εtk (13)

where εtk is normally distributed with variance-covariance matrix equal to
V(ψ) and,

Φ(ψ) = eA(tk−tk−1)

c(ψ) = (eA(tk−tk−1) − I)A−1b

V(ψ) =

∫ tk

tk−1

eA(tk−s)CC′eA
′(tk−s)ds

The coefficients of this VAR(1) process, Φ(ψ) and c(ψ), and the dis-
tribution of the innovation εtk depend on the parameters describing the
exponential-affine model. 5

To complete the state space representation of the model, I present the
measurement equation which relates the theoretical yields and the latent
factors describing the model. At time tk, the data is comprised by Nk

bond prices of different maturity denoted by Ptk = (P1k, P2k, . . . , PNk
) for

k = 1, . . . , T . The set of instruments contains both, zero-coupon and coupon
bonds with maturities that vary over time. I assume that there are discrepan-
cies between observed prices and their theoretical counterparts explained by
exogenous factors such as non-synchronous trading, rounding of prices, and
bid-ask spreads. Therefore, in the presence of measurement errors we need

5A derivation of specific expressions for the matrices Φ(ψ), c(ψ) and V(ψ) describing
the transition equation is presented in Appendix A.
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to distinguish between the theoretical term structure given by (9) and ob-
served prices. Assuming that measurement errors are additive and normally
distributed, theoretical and observed prices are related by,

Ptk = Θ(ψ,Xtk
) + vtk (14)

where vtk ∼ N (0,Hk(ψ)) is the measurement error, the vector ψ contains the
unknown parameters of the model, Xtk is a vector containing the two state
variables of the model (i.e., X = (r, µ)′), and the i−th row of Θ(ψ,Xtk

) is
equal to,

Θi(ψ,Xtk
) = exp[A(τi) +B1(τi)rtk +B2(τi)µtk ]

= exp[A(τi) + B(τi)
′Xtk ]

when the i−th bond is a zero-coupon bond and equal to,

Θi(ψ,Xtk
) =

τi∑
j=1

Cij exp[A(j) + B(j)′Xtk ]

when the i−th bond is a coupon bond paying τi coupons until the maturity.
The measurement equation (14) plus the transition system describing the

state variables (13) form the non-linear state space model describing the term
structure of interest rates.

3.3 Extended Kalman Filter

Even though the conventional Kalman filter cannot be used in the presence of
non-linear measurement and/or transition equations, an approximate filter
can be obtained by linearizing the non-linear measurement equation and
then applying the extended Kalman filter presented in Harvey (1990). The
original non-linear measurement equation (14) can be approximated using a
Taylor expansion around the conditional mean of the state variables,

Ptk = d(ψ,Xtk|tk−1
) + Z(ψ,Xtk|tk−1

)Xtk + vk (15)

where Xtk|tk−1
is the conditional mean of the state variables given the infor-

mation set available at tk, d(ψ,Xtk|tk−1
) is an Nk-vector with the i−th row

given by

di = Θ(ψ, X̂tk|tk−1
)−

∂Θ(ψ, X̂tk|tk−1
)

∂X′
tk

X̂tk|tk−1
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and Z(ψ,Xtk|tk−1
) is an Nk × 2 matrix with rows equal to

Zi =
∂P (X̂tk|tk−1

, τ)

∂X′
tk

.

Using the linear approximation of the measurement equation (15) and
the transition equation (13), the parameters of the model can be estimated
using the extended Kalman filter algorithm discussed in Harvey (1990). This
algorithm consists of a sequence of two steps, a prediction and an update step.
The prediction step yields the estimator of the state variables given by,

X̂tk|tk−1
= E(X̂tk |Ξtk−1

) = c(ψ) + Φ(ψ)X̂tk−1
(16)

with a mean square error (MSE) equal to,

Ftk|tk−1
= E

[
(Xtk − X̂tk|tk−1

)(Xtk − X̂tk|tk−1
)′|Ξtk−1

]
= ΦFtk−1

Φ′ + V

where the expectation is based on the available information up to time tk−1

represented by Ξtk−1
.

In the update step, we use the additional information given by Ptk to
obtain a more precise estimator of Xtk ,

X̂tk = E(X̂tk |Ξtk) (17)

= X̂tk|tk−1
+ Ftk|tk−1Z

′(ZFtk|tk−1Z
′ + H)−1

[
Ptk −Θ(ψ, X̂tk|tk−1

)
]

with a MSE matrix equal to,

Ftk = E
[
(Xtk − X̂tk)(Xtk − X̂tk)

′|Ξtk
]

= Ftk|tk−1 − Ftk|tk−1Z
′(ZFtk|tk−1Z

′ + H)−1ZFtk|tk−1

Once we obtain estimates of the state variables (i.e., X̂tk) using informa-
tion about the observed bond prices, we can evaluate the likelihood func-
tion using the prediction error decomposition (see Harvey (1990) for details).
Then, the log-likelihood function is given by,

T∑
k=1

log f(Ptk |ψ) = −
n∑

tk=1

Nk

2
log(2π)−1

2

n∑
k=1

log |Σk|−
1

2

n∑
k=1

v′tkΣ
−1
k vtk (18)
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where,

vtk = Ptk −Θ(ψ, X̂tk|tk−1
)

Σk = ZFtk|tk−1Z
′ + H

3.4 Estimation results

I estimate the term structure model using the extended Kalman filter al-
gorithm and assuming that prices are observed with an error. I aggregate
bonds into five categories to obtain a parsimonious covariance matrix of the
measurement errors. Each group is assumed to have the same measurement
error, therefore, the covariance matrix of the measurement errors Hk(ψ) is
a diagonal matrix with five different elements characterizing the variance of
each group, hi. The first group contains discount bonds which have maturi-
ties less or equal to one year. The remaining four groups comprise coupon
bonds with maturities up to five years, between six and ten years, between
eleven and fifteen years, and above sixteen years, respectively.

Unlike the standard practice, I treat the factors r and µ as unobservables,
and do not approximate the instantaneous rate using an observed short-term
interest rate or the time-varying mean using observed yields as in Chan et al.
(1992), Longstaff and Schwartz (1992), and Balduzzi et al. (1998). While
approximating latent factors with observable yields is convenient, note that
yields of any finite-maturity depend on both factors, r and µ, as well as on
the model parameters we are trying to identify.

Table 1 presents the estimation results. With exception of the coefficient
capturing the market price of risk of the central tendency, λ2, all parame-
ter estimates are significant at conventional values. Both, the instantaneous
interest rate and the time-varying central tendency present statistically sig-
nificant reversion toward its central tendency. However, the mean reversion
and the volatility of the instantaneous rate are considerably higher than the
coefficients estimated for its time-varying mean. Therefore, the short-term
rate is more volatile and returns faster to its time-varying mean, while the
central tendency exhibits a weak reversion to its long-run value and a volatil-
ity less than a half that of the short-rate. The mean-reversion parameters
imply a half-life of about 1 year for the short-rate, while the estimated half-
life for the time-varying mean is 14.83 years (see Figure 3).

These results suggest that the time-varying mean can be interpreted as
the level of interest rate that would prevail after ongoing temporary imbal-

12



ances in the economy –those that are expected to dissipate over the short-
run– work themselves through. In contrast, fluctuations of the first latent
state variable rt around its time-varying mean reflect shorter-lived shocks.
The model-based equilibrium real interest rate, which abstracts from both
short-lived and long-lived shocks, is equal to R∞ = 2.47 percent in semes-
tral base or R∞ = 4.94 percent in an annual base. The estimate of θ, the
steady-state value of the short-rate and the central tendency, is statistically
significant and equal to 2.95 percent in semestral base or 5.92 percent in
annual terms.

The estimated loadings of the two factors driving the yield curve provides
an insight on how each factor dynamics translates into movements of the yield
curve. In order to give an interpretation of the estimated factor loadings, note
that one can rewrite equation (10) as,

R(t, t+ τ) = a1(τ)R(∞) + b1(τ)rt + b2(τ)µt

where R(∞) = lim
τ→∞

R(t, t + τ). Figure 2 depicts the loadings on the long-

term interest rate a1(τ), on the short-term interest rate b1(τ), and on the
time varying long-term rate b2(τ) along different maturities, calculated using
the estimates presented in Table 1. The very short end of the yield curve
is driven by the first latent factor rt. The loading associated to the short-
term interest rate b1(τ) starts at 1 and decays monotonically as the term
to maturity increases reaching a value close to zero at long maturities. In
contrast, as the term to maturity increases, the central tendency µt becomes
a central factor behind the movements of the long end of the yield curve as
well as intermediate maturities.

These characteristics of the model produce model-based yield curves that
are capable to reproduce some important stylized facts. The higher volatility
and lower persistence of the instantaneous short rate compared to that of the
central tendency translates into a higher volatility at the short end than at
the long end of the yield curve, plus more persistent long interest rates than
short interest rates (see Table 2). The dynamics of the factors behind the
term structure and the estimated parameters also produce yield curves with
a variety of shapes over time, including downward sloping, upward sloping,
and hump-shaped, and at the same time produces yields that rule out arbi-
trage possibilities between bonds of different maturities (see Figure 4). Even
though the model imposes restrictions on the cross-sectional and time-series
properties of the yield curve in order to rule out arbitrage possibilities, the
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model fits quite well the observed yield-to-maturity of zero and coupon bonds
(see Figure 5).

The model estimates also produce an average yield curve that is increasing
and concave (see Figure 6). To understand why, note that the market price
of risk of the short-term interest rate imply the following risk premia for a
discount bond maturing in τ periods,6

λ1
σ1

P

∂P

∂r
= −λ1σ1

(
1− exp(−κ1τ)

κ1

)
The sign of the risk premium es equal to minus the sign of the respective

market price of risk, and the magnitude of the premium is an increasing
function of bond maturity. The estimate of λ1, the market price of risk of the
short-term interest rate, is negative and statistically significant. This implies
that a bond’s interest rate risk premium is positive and increasing with bond’s
maturity, suggesting that the yield curve is usually upward sloping.

Finally, the correlation between changes in the short rate and its time-
varying mean ρ is negative and statistically significant. The correlation might
be interpreted as a link between agents expectation of future economic condi-
tions and changes in the short-rate. The intuition is straightforward. Suppose
the economy is in a growth stage, and the monetary authority increases the
short-term interest rate in an effort to avoid an overheating of the economy.
Then, if movements in the short rate are pro-cyclical and agents believed that
a hike in the short rate signals future adverse economic conditions, there is
an incentive to sacrifice today’s consumption to buy long-term bonds that
pays off in the bad times. This increase in the demand for long-term bonds
will bid up their price and lower long-term yields, resulting in a negative cor-
relation between r and µ. The model also implies that a downward sloping
yield curve not only indicates good times today, but bad times tomorrow.
Therefore, when agents expect a recession, short-term rates will increase,
while long rates will decrease.7

6See Pennacchi (1991) and Jegadeesh and Pennacchi (1996) for a derivation.
7See Harvey (1988), Estrella and Hardouvelis (1991), Plosser and Rouwenhorst (1994),

Kamara (1997), Chapman (1997), Estrella and Mishkin (1998), Hamilton and Kim (2002),
Berardi and Torous (2005) and Ang, Piazzesi, and Wei (2006) for a more detailed explana-
tion of the information content of the shape of the term structure about economic activity.
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4 Movements in the yield curve

The yield curve might move due to changes in announcements of unemploy-
ment or inflation, changes in market participants’ risk aversion aroused from
perceived changes in the prospects for continued economic growth, or due
to changes in other economic variables (Bliss 1997). In the model presented
above changes in the instantaneous interest rate and the its time-varying cen-
tral tendency drive changes in interest rates of different maturities to varying
degrees. Therefore, it is reasonable to think that these latent factors should
capture the economic factors influencing interest rates and the changes in
the underlying determinants of the term structure of interest rates. Here, I
discuss how the term structure of interest rates changes in response to new
information about rt and µt using impulse-response functions implied by the
affine term structure model. Additionally, I attempt to provide an economic
interpretation of these shocks.8

Let me start by analyzing the effect of one standard innovation of the
instantaneous interest rate and how it translates into movements of the yield
curve. The first two panels of Figure 7 exhibit the response of the instanta-
neous short-rate rt and its time-varying mean µt to an innovation in the first
latent factor. Figure 8 presents the impulse-response functions of selected
yields, the term structure at its initial value, and one month and 5 years after
a one standard deviation of rt. The results show that the instantaneous rate
rt increases immediately after the shock and decays monotonically returning
to its initial value. On the other hand, the central tendency µ decreases
slightly due to the negative correlation between the two state variables, but
the confidence intervals indicate that this response is not statistically signif-
icant. As the loadings of each factor suggest, the shock to the instantaneous
interest rate increases short-term and medium-term interest rates by much
larger amounts than long-term interest rates. Consequently, the yield curve
initially becomes less steep, presenting a decrease in its slope. The yield
curve returns back to its initial position five years after the shock initiated
(see Figure 8).

The movements in yields in response to this shock have an intuitive expla-
nation. To better understand the following discussion, recall that the basic
asset pricing model predicts that the price of a discount bond maturing in τ

8Appendix B contains the analytical derivation of the model-based impulse-response
functions and their respective standard errors.
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periods is given by,

P (t, T ) = βτEt
[
U ′(ct+τ )

U ′(ct)

]
(19)

where U ′(ct) is the marginal utility of consumption, 0 < β < 1 denotes the
subjective discount factor, and Et is the expectation conditional on infor-
mation available at time t. Under this framework, interest rates reflect the
rate at which people are willing to trade consumption today for consumption
tomorrow (Altug and Labadie 1994).

A shock that temporarily increases short-term and medium-term yields
can be interpreted as a temporary positive shock to the economy which in-
creases production possibilities. Intuitively, after the realization of this shock
agents will face an increase in their consumption, but considering that this
gain will eventually die out, economic agents will save part of the output and
invest into capital in order to smooth their consumption (den Haan 1995).
Therefore, the expected growth rate of consumption is expected to be posi-
tive in the short-term and medium-term, implying an initial increase in the
slope of the yield curve. However, as agents start to dissave, interest rates
will fall back to their long-term level and consumption growth will return
to its steady-state level. This result is consistent with the results of Rendu
de Lint and Stolin (2003) who find that a temporary productivity shock in
a simple production stochastic growth model increases the one-period inter-
est rate more than the τ -period interest rate, increasing the slope of term
structure of interest rates.

The last two panels of Figure 7 exhibit the response of the two latent
factors to an innovation to the central tendency, while Figure 9 depicts the
impulse-response functions of the six-month, 5-year and 20-year yields as well
as the term structure of interest rates at its initial level, and one month and 5
years after the shock to µt. An innovation to the central tendency increases
immediately the time-varying mean µt, which reduces monotonically and
slowly as one would expect given the estimated high persistence of this factor.
The instantaneous interest rate rt increases quickly to catch up the new level
the central tendency reached after the shock. After reaching a value near the
central tendency, the instantaneous rate decreases slowly following the path
of the central tendency.

This shock translates into an initial increase in medium-term and long-
term yields, while short-term interest rates initially remain muted. As the
instantaneous rate increases to catch up its time-varying mean, short-term
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interest rates start to increase, while long-term interest rates start to slowly
fall as the long-run time varying mean falls back to its equilibrium level. As
a consequence, initially the slope of the yield curve increases, but rapidly the
term structure of interest rates exhibits a change in its level. Five years after
the innovation, yields of all maturities change by almost identical amounts
(see Figure 9). Slowly, the term structure of interest rates will move toward
its initial position as the effect of the shock dies off. However, the high
persistence of the time-varying mean makes this effect look as permanent,
despite the fact that this variable is stationary.

In this case, this shock can be interpreted as a persistent (almost per-
manent) positive shock to productivity. To understand why, suppose that
the economy faces a shock that has no initial impact, but eventually grows
to a permanent technology shock, whose path is perfectly anticipated by
agents. A positive innovation permanently increases the level of expected
future consumption, thereby the high expected levels of future consumption
makes long-term bonds less attractive driving prices down and driving yields
up.9 As the impact of the innovation materializes, agents will require a
higher return as an inducement to save, leading to an increase in yields of all
maturities.

5 Final remarks

I show that when thinking about movements in the term structure, one should
think in changes in at least two type of forces that hit the economy. First,
shocks that are short-lived, which change the slope of the yield curve. Second,
long-lived shocks that influence yields of all maturities and shift the level of
the term structure of interest rates.

However, two questions remain unanswered. Is it reasonable to relate
the effects of the short-lived shocks to the effects of inflationary pressures or
monetary policy surprises as in Piazzesi (2005)or Wu (2001)?. Furthermore,
can the long-lived innovations be related to changes in household consump-
tion preferences, or perceptions about future economic prospects?. A second
unanswered question is whether one can improve the understanding of the
factors that lie behind the movements of the term structure by including
macroeconomic variables explicitly to the model presented in the paper.

9Again, this results is consistent with the equilibrium condition (19)
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The findings from the estimated model might also be useful for build-
ing an equilibrium model of the economy. Labadie (1994) shows that the
assumption about the persistence of the shocks is very important when eval-
uating the asset pricing implications of the representative agent framework.
She argues that the dichotomous results that arise about the behavior of the
yield curve depending on whether endowment shocks are temporary or per-
manent, are the natural outcome of assuming that there is a single shock to
the economy. As previously argued by Christiano and Eichenbaum (1990),
the results obtained here suggest that instead of using one type of shock over
the other, the best strategy is probably to cast a model with both types of
shocks.
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A Model solution and state space represen-

tation

A.1 Model solution

As shown in Cochrane (2005), the partial equation that characterizes the
price of a discount bond of maturity τ is given by,

1

2

(
∂2P

∂r2
σ2

1 +
∂2P

∂µ2
σ2

2

)
+

∂2P

∂r∂µ
σ1σ2ρ+

∂P

∂r

[
κ1

(
µ− r − λ1σ1

κ1

)]
(20)

+
∂P

∂µ

[
κ2

(
θ − µ− λ2σ2

κ2

)]
+
∂P

∂t
− rP = 0

I assume that there is a solution for this fundamental valuation equation
that is represented by,

P (t, T ) = exp [A(τ) +B1 (τ) rt +B2 (τ)µt] (21)

Obtaining the partial derivatives of the solution (21) and replacing them
back into the partial differential equation that characterizes the price of a
discount bond (20) one obtains,

1

2
B2

1 (τ)σ2
1 +

1

2
B2

2 (τ)σ2
2 +B1 (τ)B2 (τ)σ1σ2ρ (22)

+B1 (κ1 (µt − rt)− λ1σ1) +B2 (κ2 (θ − µt)− λ2σ2)

−
[
dA(τ)

dτ
+
dB1(τ)

dτ
rt +

dB2(τ)

dτ
µt

]
− rt = 0

Collecting terms and knowing that (22) must hold for all rt and µt we
obtain the following system of ordinary differential equations,

0 =
1

2
B2

1 (τ)σ2
1 +

1

2
B2

2 (τ)σ2
2 +B1 (τ)B2 (τ)σ1σ2ρ−B1λ1σ1 −B2λ2σ2 +B2κ2θ −

dA(τ)

dτ

0 = −B1 (τ)κ1 −
dB1(τ)

dτ
− 1

0 = B1 (τ)κ1 −B2(τ)κ2 −
dB2(τ)

dτ
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With boundary initial conditions, B (0) = 0 and A (0) = 0, the solution to
this system of ordinary differential equations is equal to,

B1(τ) =
exp (−κ1τ)− 1

κ1

B2(τ) =
exp (−κ2τ)− 1

κ2

− exp (−κ1τ)− exp (−κ2τ)

κ1 − κ2

A(τ) =

∫ τ

0

(
1

2
B2

1σ
2
1 +B2

2σ
2
2 +B1B2σ1σ2ρ−B1λ1σ1 −B2λ2σ2 +B2κ2θ

)
ds

which are the equations presented in the text.

A.2 State space representation

The equivalent discrete-time for the process (12) is given by,

Xtk = Φ(ψ)Xtk−1
+ c(ψ) + εtk (23)

where εtk is normally distributed with variance-covariance matrix equal to
V(ψ) and,

Φ(ψ) = eA(tk−tk−1)

=

[
exp (−κ1∆t)

κ1

κ2−κ1
(exp (−κ1∆t)− exp (−κ2∆t))

0 exp (−κ2∆t)

]
c(ψ) = (eA(tk−tk−1) − I)A−1b

=

[
θ
(
1− κ2

κ2−κ1
exp (−κ1∆t) + κ1

κ2−κ1
exp (−κ2∆t)

)
θ (1− exp (−κ2∆t))

]

V(ψ) =

∫ tk

tk−1

eA(tk−s)CC′eA
′(tk−s)ds
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B Model-based impulse-response functions and

their standard errors

Using the discrete-time process describing rt and µt given by (13), one can
obtain the following VAR(1) model,10

(Xtk − X̄) = Φ(ψ)(Xtk−1 − X̄) + εt

where, X̄ = [I−Φ(ψ)]−1c, and εt ∼ N (0,V(ψ)).
This model can be written in vector MA(∞) form as,

Xtk = X̄ + εtk + Γ1εtk−1
+ Γ2εtk−2

+ · · ·

where Γ1 = Φ, Γ2 = Γ1∗Φ, and in general Γs = Γs−1∗Φ.
The consequence for Xtk+s

of new information about about rt beyond
that contained in Xtk−1

is given by,

∂E
(
Xtk+s

|rtk ,Xtk−1

)
∂rtk

To calculate this magnitude note that one can write the variance-covariance
matrix of εt as the product of a lower triangular matrix with ones along the
principal diagonal, and a diagonal matrix with positive entries along the
principal diagonal,

V = ADA′

with,

A =

[
1 0

V21V
−1
11 1

]
, D =

[
V11 0
0 V22 − V21V

−1
11 V12

]
The orthogonalized impulse response function is given by,

ĥ1,s =
∂E
(
Xtk+s

|rtk ,Xtk−1

)
∂rtk

= ΓsA1

ĥ2,s =
∂E
(
Xtk+s

|µtk ,Xtk−1

)
∂µtk

= ΓsA2

where Aj is the j-the column of matrix A. The Cholesky decomposition of
the matrix the variance-covariance matrix of εt is given by V = PP′. Using
this expression the impulse-response function is given by,

10The results here are obtained using the methods described in Hamilton (1994).
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ĥ1,s =
∂E
(
Xtk+s

|rtk ,Xtk−1

)
∂rtk

= ΓsP1 = ΓsA1

√
d11

ĥ2,s =
∂E
(
Xtk+s

|µtk ,Xtk−1

)
∂µtk

= ΓsP2 = ΓsA2

√
d22

Since yields are an affine function of the vector of latent factors, the
impulse response functions for a yield of maturity τ is given by,

ẑ1,s =
∂E
(
R(tk+s, T )|rtk ,Xtk−1

)
∂rtk

= (−1/τ)B′∂E
(
Xtk+s

|rtk ,Xtk−1

)
∂rtk

ẑ2,s =
∂E
(
R(tk+s, T )|µtk ,Xtk−1

)
∂µtk

= (−1/τ)B′∂E
(
Xtk+s

|µtk ,Xtk−1

)
∂µtk

The impulse-response functions are a nonlinear function of the parameters
of the model ψ, therefore the standard errors for hj,s and zj,s can be calculated
using the delta expansion of the asymptotic distribution of ψ, obtaining,

√
T
(
ĥj,s − hj,s

)
→ N

(
0,
∂hj,s
∂ψ′

∣∣∣∣
ψ= bψ

JT
∂hj,s
∂ψ′

∣∣∣∣′
ψ= bψ

)
√
T (ẑj,s − zj,s) → N

(
0,
∂zj,s
∂ψ′

∣∣∣∣
ψ= bψ

JT
∂zj,s
∂ψ′

∣∣∣∣′
ψ= bψ

)
To calculate this derivatives recall that, Γs = Γs−1∗Φ then the deriva-

tive of the non-orthogonalized impulse-response with respect to the scalar ψi
denoting some particular element of ψ is equal to,

∂Γs

∂ψi
=
∂Γs−1Φ

∂ψi

=
∂Γs−1

∂ψi
Φ + Γs−1

∂Φ

∂ψi

Then,

∂ĥj,s
∂ψi

=
∂Γs

∂ψi
Aj + Γs

∂Aj

∂ψi
In the case of the Cholesky decomposition one obtains,

∂ĥj,s
∂ψi

=
∂Γs

∂ψi
Aj

√
djj + Γs

∂Aj

∂ψi

√
djj + ΓsAj

1

2
√
djj

∂djj
∂ψi
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Similarly, for the impulse-response functions of the yields the partial
derivative is equal to,

∂zj,s
∂ψi

= (−1/τ)B′∂ĥj,s
∂ψi

+ (−1/τ)
∂B′

∂ψi
ĥj,s
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Table 1: Maximum Likelihood Estimates (1990:01 - 2006:03)

Parameter Estimate Parameter Estimate
κ1 0.2959 h1 0.01645

(0.0195) (0.0040)
σ1 0.0090 h2 0.5808

(0.0006) (0.0298)
λ1 -0.2686 h3 0.7498

(0.1566) (0.0254)
κ2 0.0265 h4 0.0793

(0.0031) (0.0064)
σ2 0.0040 h5 1.9466

(0.0002) (0.1280)
λ2 0.0140

(0.0232)
ρ -0.1480

(0.0856)
θ 0.0295

(0.0058)
Half-life r 1.0046 years R(∞) 0.0247
Half-life µ 14.8333 years
Note: The table reports maximum likelihood estimates of
an affine term structure model described by,

drt = κ1(µt − rt)dt+ σ1dW1t

dµt = κ2(θ − µt)dt+ σ2dW2t

using monthly data on zero and coupon bonds for the
1990:01-2005:03 period. The estimates of the measurement
equation error covariance matrix hi are multiplied by 102.
The time unit t is expressed in semesters, therefore the
model-based yields are in semestral base.
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Table 2: Yield curve estimates descriptive statistics (1990:01-2006:03)

Maturity Mean Std. dev. Minimum Maximum Vt+12

1 month 4.863 3.026 -2.594 12.159 1.797
6 months 4.921 2.882 -2.069 11.794 1.796
1 year 5.021 2.637 -1.157 11.161 1.792
2 years 5.177 2.275 0.2367 10.193 1.812
3 years 5.293 2.030 1.227 9.512 1.839
4 years 5.382 1.858 1.740 9.349 1.862
5 years 5.453 1.731 1.838 9.346 1.887
6 years 5.509 1.633 1.937 9.325 1.904
7 years 5.556 1.555 2.034 9.291 1.916
8 years 5.594 1.490 2.118 9.249 1.930
9 years 5.625 1.434 2.203 9.200 1.937
10 years 5.651 1.384 2.286 9.147 1.949
15 years 5.723 1.193 2.666 8.848 1.968
20 years 5.738 1.053 2.977 8.539 1.979
Note: Descriptive statistics for model-based monthly yields at different
maturities in annual base. The last column presents the variance ratio
defined as, Vt+12 = 1

k
var(yt+12−yt)
var(yt+1−yt)

.
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Figure 1: End-of-month available discount and coupon bonds over the sample
period. A point represents a bond available for the corresponding maturity
and time period.

Figure 2: Estimated factor loadings in the affine term structure model,
R(t, t+ τ) = a1(τ)R(∞) + b1(τ)rt + b2(τ)µt
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Figure 3: Estimated latent factors rt and µt in annual base over
1990:01-2006:03

Figure 4: Yield curves in annual base estimated using the estimates of an
affine term structure model for the 1990:01-2006:03 period
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(a) Yield-to-maturity on September, 1993 (b) Yield-to-maturity on March, 2002

Figure 5: Model-based yield to maturity (continuous line) and the observed
yields of traded instruments (circle points) in annual base

Figure 6: Model-based average yield curve in annual base for the
1990:01-2006:03 period
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(a) Response of rt to a one std. dev. of rt (b) Response of µt to a one std. dev. of rt

(c) Response of rt to a one std. dev. of µt (d) Response of µt to a one std. dev. of µt

Figure 7: Estimated impulse-response functions of the instantaneous short
rate and the central tendency (solid line) along 95 percent confidence bands
(dotted lines)
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(a) Response of 6-month yield to a one
standard deviation of rt

(b) Response of 5-year yield to a one
standard deviation of rt

(c) Response of 10-year yield to a one
standard deviation of rt

(d) Response of 20-year yield to a one
standard deviation of rt

(e) Original yield curve (t0) and the
yield curve one month (t1) and 5 years
(t60) after a one standard deviation of rt

Figure 8: Estimated impulse-response functions of selected yields and the
yield curve to a one standard deviation of rt (solid line) along with 95 percent
confidence bands (dotted lines)
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(a) Response of 6-month yield to a one
standard deviation of µt

(b) Response of 5-year yield to a one
standard deviation of µt

(c) Response of 10-year yield to a one
standard deviation of µt

(d) Response of 20-year yield to a one
standard deviation of µt

(e) Original yield curve (t0) and the
yield curve one month (t1) and 5 years
(t60) after a one standard deviation of
µt

Figure 9: Estimated impulse-response functions of selected yields and the
yield curve to a one standard deviation of µt (solid line) along with 95 percent
confidence bands (dotted lines) 35
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